DataSheet8.cn


PDF ( 数据手册 , 数据表 ) MC33129

零件编号 MC33129
描述 HIGH PERFORMANCE CURRENT MODE CONTROLLERS
制造商 Motorola Semiconductors
LOGO Motorola Semiconductors LOGO 


1 Page

No Preview Available !

MC33129 数据手册, 描述, 功能
Order this document by MC34129/D
High Performance
Current Mode Controllers
The MC34129/MC33129 are high performance current mode switching
regulators specifically designed for use in low power digital telephone
applications. These integrated circuits feature a unique internal fault timer
that provides automatic restart for overload recovery. For enhanced system
efficiency, a start/run comparator is included to implement bootstrapped
operation of VCC. Other functions contained are a temperature compensated
reference, reference amplifier, fully accessible error amplifier, sawtooth
oscillator with sync input, pulse width modulator comparator, and a high
current totem pole driver ideally suited for driving a power MOSFET.
Also included are protective features consisting of soft–start,
undervoltage lockout, cycle–by–cycle current limiting, adjustable deadtime,
and a latch for single pulse metering.
Although these devices are primarily intended for use in digital telephone
systems, they can be used cost effectively in many other applications.
Current Mode Operation to 300 kHz
Automatic Feed Forward Compensation
Latching PWM for Cycle–by–Cycle Current Limiting
Continuous Retry after Fault Timeout
Soft–Start with Maximum Peak Switch Current Clamp
Internally Trimmed 2% Bandgap Reference
High Current Totem Pole Driver
Input Undervoltage Lockout
Low Startup and Operating Current
Direct Interface with Motorola SENSEFET Products
MC34129
MC33129
HIGH PERFORMANCE
CURRENT MODE
CONTROLLERS
SEMICONDUCTOR
TECHNICAL DATA
14
1
P SUFFIX
PLASTIC PACKAGE
CASE 646
14
1
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
PIN CONNECTIONS
CSoft–Start 12
7
Gnd
6
Vref 2.5V
5
RT/CT
Sync/Inhibit 4
Input
Simplified Block Diagram
Soft–Start
and
Fault Timer
Start/Run
13 Start/Run
Output
Undervoltage 14
Lockout
VCC
1.25V
Reference
8
Vref 1.25V
X2
Oscillator
Latching
PWM
Error Amp
9
+
10
Noninverting
Input
Inverting
11
Input
Feedback/
1 PWM Input
Drive Out
2
Drive Gnd
3
Ramp Input
Drive Output 1
Drive Ground 2
Ramp Input 3
Sync/Inhibit
Input
4
RT/CT 5
Vref 2.5 V 6
Gnd 7
14 VCC
13 Start/Run Output
12 CSoft–Start
Feedback/
11 PWM Input
10
Error Amp
Inverting Input
9 Error Amp
Noninverting Input
8 Vref 1.25 V
(Top View)
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
MC34129D
MC34129P
TA = 0° to +70°C
SO–14
Plastic DIP
MC33129D
TA = – 40° to +85°C
MC33129P
SO–14
Plastic DIP
MOTOROLA ANALOG IC DEVICE DATA
© Motorola, Inc. 1996
Rev 1
1







MC33129 pdf, 数据表
MC34129 MC33129
OPERATING DESCRIPTION
The MC34129 series are high performance current mode
switching regulator controllers specifically designed for use in
low power telecommunication applications. Implementation
will allow remote digital telephones and terminals to shed
their power cords and derive operating power directly from
the twisted pair used for data transmission. Although these
devices are primarily intended for use in digital telephone
systems, they can be used cost effectively in a wide range of
converter applications. A representative block diagram is
shown in Figure 18.
Oscillator
The oscillator frequency is programmed by the values
selected for the timing components RT and CT. Capacitor CT
is charged from the 2.5 V reference through resistor RT to
approximately 1.25 V and discharged by an internal current
sink to ground. During the discharge of CT, the oscillator
generates an internal blanking pulse that holds the lower
input of the NOR gate high. This causes the Drive Output to
be in a low state, thus producing a controlled amount of
output deadtime. Figure 1 shows Oscillator Frequency
versus RT and Figure 2 Output Deadtime versus Frequency,
both for given values of CT. Note that many values of RT and
CT will give the same oscillator frequency but only one
combination will yield a specific output deadtime at a give
frequency. In many noise sensitive applications it may be
desirable to frequency–lock one or more switching regulators
to an external system clock. This can be accomplished by
applying the clock signal to the Synch/Inhibit Input. For
reliable locking, the free–running oscillator frequency should
be about 10% less than the clock frequency. Referring to the
timing diagram shown Figure 19, the rising edge of the clock
signal applied to the Sync/Inhibit Input, terminates charging
of CT and Drive Output conduction. By tailoring the clock
waveform, accurate duty cycle clamping of the Drive Output
can be achieved. A circuit method is shown in Figure 20. The
Sync/Inhibit Input may also be used as a means for system
shutdown by applying a dc voltage that is within the range of
2.0 V to VCC.
PWM Comparator and Latch
The MC34129 operates as a current mode controller
whereby output switch conduction is initiated by the oscillator
and terminated when the peak inductor current reaches a
threshold level established by the output of the Error Amp or
Soft–Start Buffer (Pin 11). Thus the error signal controls the
peak inductor current on a cycle–by–cycle basis. The PWM
Comparator–Latch configuration used, ensures that only a
single pulse appears at the Drive Output during any given
oscillator cycle. The inductor current is converted to a voltage
by inserting the ground–referenced resistor RS in series with
the source of output switch Q1. The Ramp Input adds an
offset of 275 mV to this voltage to guarantee that no pulses
appear at the Drive Output when Pin 11 is at its lowest state.
This occurs at the beginning of the soft–start interval or when
the power supply is operating and the load is removed. The
peak inductor current under normal operating conditions is
controlled by the voltage at Pin 11 where:
Ipk =
V(Pin 11) – 0.275 V
RS
Abnormal operating conditions occur when the power
supply output is overloaded or if output voltage sensing is
lost. Under these conditions, the voltage at Pin 11 will be
internally clamped to 1.95 V by the output of the Soft–Start
Buffer. Therefore the maximum peak switch current is:
Ipk(max)
=
1.95
V – 0.275
RS
=
1.675 V
RS
When designing a high power switching regulator it
becomes desirable to reduce the internal clamp voltage in
order to keep the power dissipation of RS to a reasonable
level. A simple method which adjusts this voltage in discrete
increments is shown in Figure 22. This method is possible
because the Ramp Input bias current is always negative
(typically –120 µA). A positive temperature coefficient equal
to that of the diode string will be exhibited by Ipk(max). An
adjustable method that is more precise and temperature
stable is shown in Figure 23. Erratic operation due to noise
pickup can result if there is an excessive reduction of the
clamp voltage. In this situation, high frequency circuit layout
techniques are imperative.
A narrow spike on the leading edge of the current
waveform can usually be observed and may cause the power
supply to exhibit an instability when the output is lightly
loaded. This spike is due to the power transformer
interwinding capacitance and output rectifier recovery time.
The addition of an RC filter on the Ramp Input with a time
constant that approximates the spike duration will usually
eliminate the instability; refer to Figure 25.
Error Amp and Soft–Start Buffer
A fully–compensated Error Amplifier with access to both
inputs and output is provided for maximum design flexibility.
The Error Amplifier output is common with that of the
Soft–Start Buffer. These outputs are open–collector (sink
only) and are ORed together at the inverting input of the PWM
Comparator. With this configuration, the amplifier that
demands lower peak inductor current dominates control of
the loop. Soft–Start is mandatory for stable startup when
power is provided through a high source impedance such as
the long twisted pair used in telecommunications. It
effectively removes the load from the output of the switching
power supply upon initial startup. The Soft–Start Buffer is
configured as a unity gain follower with the noninverting input
connected to Pin 12. An internal 1.0 µA current source
charges the soft–start capacitor (CSoft–Start) to an internally
clamped level of 1.95 V. The rate of change of peak inductor
current, during startup, is programmed by the capacitor value
selected. Either the Fault Timer or the Undervoltage Lockout
can discharge the soft–start capacitor.
8 MOTOROLA ANALOG IC DEVICE DATA







MC33129 equivalent, schematic
14
1
A
F
HG
MC34129 MC33129
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
8
B
7
C
N
SEATING
PLANE
D
K
L
J
M
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
INCHES
MILLIMETERS
DIM MIN MAX MIN MAX
A 0.715 0.770 18.16 19.56
B 0.240 0.260 6.10 6.60
C 0.145 0.185 3.69 4.69
D 0.015 0.021 0.38 0.53
F 0.040 0.070 1.02 1.78
G 0.100 BSC
2.54 BSC
H 0.052 0.095 1.32 2.41
J 0.008 0.015 0.20 0.38
K 0.115 0.135 2.92 3.43
L 0.300 BSC
7.62 BSC
M 0_ 10_ 0_ 10_
N 0.015 0.039 0.39 1.01
–A–
14
1
G
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
8
–B–
7
P 7 PL
0.25 (0.010) M B M
C R X 45 _
–T–
SEATING
PLANE
D 14 PL
K
0.25 (0.010) M T B S A S
M
F
J
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
A 8.55 8.75 0.337 0.344
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016 0.049
G 1.27 BSC
0.050 BSC
J 0.19 0.25 0.008 0.009
K 0.10 0.25 0.004 0.009
M 0_ 7_ 0_ 7_
P 5.80 6.20 0.228 0.244
R 0.25 0.50 0.010 0.019
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
16
*MC34129/D*MOTOROLA ANALOG IC DEMVCI3C4E12D9/ADTA










页数 16 页
下载[ MC33129.PDF 数据手册 ]


分享链接

Link :

推荐数据表

零件编号描述制造商
MC33121LOW VOLTAGE SUBSCRIBER LOOP INTERFACE CIRCUITMotorola Semiconductors
Motorola Semiconductors
MC33128POWER MANAGEMENT CONTROLLERMotorola Semiconductors
Motorola Semiconductors
MC33129HIGH PERFORMANCE CURRENT MODE CONTROLLERSMotorola Semiconductors
Motorola Semiconductors
MC33129(MC33129 / MC34129) High Performance Current Mode ControllerMotorola Semiconductors
Motorola Semiconductors

零件编号描述制造商
STK15C88256-Kbit (32 K x 8) PowerStore nvSRAMCypress Semiconductor
Cypress Semiconductor
NJM4556DUAL HIGH CURRENT OPERATIONAL AMPLIFIERNew Japan Radio
New Japan Radio
EL1118-G5 PIN LONG CREEPAGE SOP PHOTOTRANSISTOR PHOTOCOUPLEREverlight
Everlight


DataSheet8.cn    |   2020   |  联系我们   |   搜索  |  Simemap